Wednesday, October 30, 2019

QuantLib-Python: Note on ForwardCurve Construction

In this post, we will construct QuantLib ForwardCurve instance and investigate the resulting term structure of discount factors. Python program and Excel can be downloaded from my GitHub page. First, let us assume the following market data containing [A] one cash deposit and three interpolated rates from futures strip.


















After completing bootstrapping procedure, we should get [B] simple spot discount factors and [C] simple forward rates. Next, let us implement this scheme in QuantLib. Import QuantLib libraries and create relevant date objects. Then, set forward rates (from [C]), dates and create QuantLib forward curve instance.

import QuantLib as ql
today = ql.Date(30, 10, 2019)
ql.Settings.instance().evaluationDate = today  
settlementDate = ql.TARGET().advance(today, ql.Period(2, ql.Days))

rts = [0.03145, 0.03145, 0.0278373626373627, 0.0253076923076923, 0.0249373626373629]
dts = [settlementDate, ql.Date(1,2,2020), ql.Date(1,5,2020), ql.Date(1,8,2020), ql.Date(1,11,2020)]
c = ql.ForwardCurve(dts, rts, ql.Actual360(), ql.NullCalendar(), ql.BackwardFlat())
df = [c.discount(d) for d in dts]
print(df)

We get the following set of spot discount factors from the curve instance.
[1.0, 0.9919949898918935, 0.9851153255552918, 0.9787646299045335, 0.9725469122728971]
Note, that these are not what we expected to see. "The correct ones" are calculated in the column [B] in the example above. The issue here is, that when constructing ForwardCurve object, the given forward rates inputs are implicitly defined as continuously compounded rates. Assuming we would like to get the same discount factor term structure as in our example above in [B], we need to convert our forward rate inputs from simple to continuously compounded rates. Let us implement this in QuantLib. Convert simple rates to continuous rates. Then, reset forward rates and re-create QuantLib forward curve instance.

for i in range(len(rts) - 1):
    r_simple = ql.InterestRate(rts[i + 1], ql.Actual360(), ql.Simple, ql.Once)
    t = ql.Actual360().yearFraction(dts[i], dts[i + 1])
    r_continuous = r_simple.equivalentRate(ql.Continuous, ql.NoFrequency, t)
    rts[i + 1] = r_continuous.rate()
    
# set rate for the first node
rts[0] = rts[1]
c = ql.ForwardCurve(dts, rts, ql.Actual360(), ql.NullCalendar(), ql.BackwardFlat())
df = [c.discount(d) for d in dts]
print(df)

We get the following "correct" set of spot discount factors from the curve instance.
[1.0, 0.9920268596783518, 0.9851707210231435, 0.9788400520709886, 0.9726415228427708]
Inputs (dates and forward rates) for ForwardCurve object are defined in yellow box in column [E] below.
















ForwardCurve object interpolation scheme is backward flat. This means, that for the final period (from 1-Aug-20 to 1-Nov-20), forward rate of 2.48582% will be applied. Implicitly this means, that there is no practical use for the first given forward rate (at the node, where the date is 1-Nov-19). However, this rate has to be defined anyway.

Note, that QuantLib logic of constructing ForwardCurve object is completely correct. One should just be aware of the fact, that input forward rates given are handled implicitly as continuously compounded rates.

Finally, there are some other types of issues concerning forward rate interpolation, which might be worth of knowing when working with ForwardCurve object. These issues are fully explained in this video given by QuantLib lead developer Luigi Ballabio.

As always, thanks for reading this blog.
-Mike

Sunday, October 20, 2019

Python-QuantLib-SciPy: Optimizing Smooth Libor Forward Curve Revisited

One reader was making a remark, that my implementation for curve calibration scheme as presented in here, was not implemented by using QuantLib. As I was re-thinking my implementation, I suddenly remembered that in QuantLib, there are actually several ways to create yield term structures. One such approach is to create yield term structure from a set of given dates and forward rates. Also, VanillaSwap class gives us a direct mechanism for valuing swap transaction by using constructed curve. Bingo. So, this post is re-visiting curve calibration scheme, but this time implemented by using relevant QuantLib-Python library tools.

A few words about utility classes. Convert class will be used for transforming specific in-built data types into specific QuantLib types (Date, Calendar, DayCounter, etc). VanillaSwap class is just a wrapper for corresponding QuantLib.VanillaSwap class. It should be noted, that there is conventional NPV method for requesting swap PV by giving two specific arguments (yield term structure and floating leg index). There is also another method NPV_calibration, which is used for calculating swap PV during calibration process. For this method, input arguments are list of forward rates, list of forward dates and list of initial market rates. From this information, specific yield term structure implementation (QuantLib.ForwardCurve) will be created and used for valuing swap transaction.

import re
import numpy as np
import scipy.optimize as opt
import matplotlib.pyplot as pl
import QuantLib as ql

# utility class for different QuantLib type conversions 
class Convert():
    
    # convert date string ('yyyy-mm-dd') to QuantLib Date object
    def to_date(s):
        monthDictionary = {
            '01': ql.January, '02': ql.February, '03': ql.March,
            '04': ql.April, '05': ql.May, '06': ql.June,
            '07': ql.July, '08': ql.August, '09': ql.September,
            '10': ql.October, '11': ql.November, '12': ql.December
        }
        arr = re.findall(r"[\w']+", s)
        return ql.Date(int(arr[2]), monthDictionary[arr[1]], int(arr[0]))
    
    # convert string to QuantLib businessdayconvention enumerator
    def to_businessDayConvention(s):
        if (s.upper() == 'FOLLOWING'): return ql.Following
        if (s.upper() == 'MODIFIEDFOLLOWING'): return ql.ModifiedFollowing
        if (s.upper() == 'PRECEDING'): return ql.Preceding
        if (s.upper() == 'MODIFIEDPRECEDING'): return ql.ModifiedPreceding
        if (s.upper() == 'UNADJUSTED'): return ql.Unadjusted
        
    # convert string to QuantLib calendar object
    def to_calendar(s):
        if (s.upper() == 'TARGET'): return ql.TARGET()
        if (s.upper() == 'UNITEDSTATES'): return ql.UnitedStates()
        if (s.upper() == 'UNITEDKINGDOM'): return ql.UnitedKingdom()
        # TODO: add new calendar here
        
    # convert string to QuantLib swap type enumerator
    def to_swapType(s):
        if (s.upper() == 'PAYER'): return ql.VanillaSwap.Payer
        if (s.upper() == 'RECEIVER'): return ql.VanillaSwap.Receiver
        
    # convert string to QuantLib frequency enumerator
    def to_frequency(s):
        if (s.upper() == 'DAILY'): return ql.Daily
        if (s.upper() == 'WEEKLY'): return ql.Weekly
        if (s.upper() == 'MONTHLY'): return ql.Monthly
        if (s.upper() == 'QUARTERLY'): return ql.Quarterly
        if (s.upper() == 'SEMIANNUAL'): return ql.Semiannual
        if (s.upper() == 'ANNUAL'): return ql.Annual

    # convert string to QuantLib date generation rule enumerator
    def to_dateGenerationRule(s):
        if (s.upper() == 'BACKWARD'): return ql.DateGeneration.Backward
        if (s.upper() == 'FORWARD'): return ql.DateGeneration.Forward
        # TODO: add new date generation rule here

    # convert string to QuantLib day counter object
    def to_dayCounter(s):
        if (s.upper() == 'ACTUAL360'): return ql.Actual360()
        if (s.upper() == 'ACTUAL365FIXED'): return ql.Actual365Fixed()
        if (s.upper() == 'ACTUALACTUAL'): return ql.ActualActual()
        if (s.upper() == 'ACTUAL365NOLEAP'): return ql.Actual365NoLeap()
        if (s.upper() == 'BUSINESS252'): return ql.Business252()
        if (s.upper() == 'ONEDAYCOUNTER'): return ql.OneDayCounter()
        if (s.upper() == 'SIMPLEDAYCOUNTER'): return ql.SimpleDayCounter()
        if (s.upper() == 'THIRTY360'): return ql.Thirty360()
        
    # convert string (ex.'USDLibor.3M') to QuantLib ibor index object
    # note: forwarding term structure has to be linked to index object separately
    def to_iborIndex(s):
        s = s.split('.')
        if(s[0].upper() == 'USDLIBOR'): return ql.USDLibor(ql.Period(s[1]))
        if(s[0].upper() == 'EURIBOR'): return ql.Euribor(ql.Period(s[1]))  

class VanillaSwap(object):
    
    def __init__(self, ID, swapType, nominal, startDate, maturityDate, fixedLegFrequency, 
        fixedLegCalendar, fixedLegConvention, fixedLegDateGenerationRule, fixedLegRate, fixedLegDayCount,
        fixedLegEndOfMonth, floatingLegFrequency, floatingLegCalendar, floatingLegConvention, 
        floatingLegDateGenerationRule, floatingLegSpread, floatingLegDayCount, 
        floatingLegEndOfMonth, floatingLegIborIndex):

        # create member data, convert all required QuantLib types
        self.ID = str(ID)
        self.swapType = Convert.to_swapType(swapType)
        self.nominal = float(nominal)
        self.startDate = Convert.to_date(startDate)
        self.maturityDate = Convert.to_date(maturityDate)
        self.fixedLegFrequency = ql.Period(Convert.to_frequency(fixedLegFrequency))
        self.fixedLegCalendar = Convert.to_calendar(fixedLegCalendar)
        self.fixedLegConvention = Convert.to_businessDayConvention(fixedLegConvention)
        self.fixedLegDateGenerationRule = Convert.to_dateGenerationRule(fixedLegDateGenerationRule)
        self.fixedLegRate = float(fixedLegRate)
        self.fixedLegDayCount = Convert.to_dayCounter(fixedLegDayCount)
        self.fixedLegEndOfMonth = bool(fixedLegEndOfMonth)
        self.floatingLegFrequency = ql.Period(Convert.to_frequency(floatingLegFrequency))
        self.floatingLegCalendar = Convert.to_calendar(floatingLegCalendar)
        self.floatingLegConvention = Convert.to_businessDayConvention(floatingLegConvention)
        self.floatingLegDateGenerationRule = Convert.to_dateGenerationRule(floatingLegDateGenerationRule)
        self.floatingLegSpread = float(floatingLegSpread)
        self.floatingLegDayCount = Convert.to_dayCounter(floatingLegDayCount)
        self.floatingLegEndOfMonth = bool(floatingLegEndOfMonth)
        self.floatingLegIborIndex = Convert.to_iborIndex(floatingLegIborIndex)

        # create fixed leg schedule
        self.fixedLegSchedule = ql.Schedule(
            self.startDate, 
            self.maturityDate,
            self.fixedLegFrequency, 
            self.fixedLegCalendar, 
            self.fixedLegConvention,
            self.fixedLegConvention,
            self.fixedLegDateGenerationRule,
            self.fixedLegEndOfMonth)
        
        # create floating leg schedule
        self.floatingLegSchedule = ql.Schedule(
            self.startDate, 
            self.maturityDate,
            self.floatingLegFrequency, 
            self.floatingLegCalendar, 
            self.floatingLegConvention,
            self.floatingLegConvention,
            self.floatingLegDateGenerationRule,
            self.floatingLegEndOfMonth)

    # NPV method used for specific calibration purposes
    # x = list of forward rates
    # args: 0 = list of forward dates, 1 = list of market rates        
    def NPV_calibration(self, x, args):
        # concatenate given market rates and given forward rates
        x = np.concatenate([args[1], x])
        
        # create QuantLib yield term structure object
        # from a given set of forward rates and dates
        curve = ql.YieldTermStructureHandle(ql.ForwardCurve(args[0], x, 
            self.floatingLegDayCount, self.floatingLegCalendar))        

        # set forwarding term structure to floating leg index
        self.floatingLegIborIndex = self.floatingLegIborIndex.clone(curve) 
        
        # create vanilla interest rate swap
        self.instrument = ql.VanillaSwap(
            self.swapType, 
            self.nominal, 
            self.fixedLegSchedule, 
            self.fixedLegRate, 
            self.fixedLegDayCount, 
            self.floatingLegSchedule,
            self.floatingLegIborIndex,
            self.floatingLegSpread, 
            self.floatingLegDayCount)
        
        # pair instrument with pricing engine, request PV
        self.instrument.setPricingEngine(ql.DiscountingSwapEngine(curve))
        return self.instrument.NPV()
    
    # NPV method used for general pricing purposes
    def NPV(self, yieldTermStructureHandle, floatingLegIborIndex):
        # set forwarding term structure to floating leg index
        self.floatingLegIborIndex = floatingLegIborIndex.clone(yieldTermStructureHandle)
        
        # create vanilla interest rate swap
        self.instrument = ql.VanillaSwap(
            self.swapType, 
            self.nominal, 
            self.fixedLegSchedule, 
            self.fixedLegRate, 
            self.fixedLegDayCount, 
            self.floatingLegSchedule,
            self.floatingLegIborIndex,
            self.floatingLegSpread, 
            self.floatingLegDayCount)
        
        # pair instrument with pricing engine, request PV
        self.instrument.setPricingEngine(ql.DiscountingSwapEngine(yieldTermStructureHandle))
        return self.instrument.NPV()

ObjectiveFunction is used for minimization process for calculating sum of squared errors of all adjacent forward rates. Maximum smoothness of the curve will be achieved as a result of this minimization.

# objective function calculates sum of squared errors of all decision variables
# x = list of forward rates
# args: 0 = list of market rates data, 1 = scaling factor
def ObjectiveFunction(x, args):
    # concatenate given market rates and forward rates
    x = np.concatenate([args[0], x])
    return np.sum(np.power(np.diff(x), 2) * args[1])

The actual program flow will start by creating a set of vanilla interest rate swap objects (VanillaSwap) into list.

# dynamic data parts for set of vanilla swaps 
swapIDs = ['2Y', '3Y', '4Y', '5Y', '6Y', '7Y', '8Y', '9Y', '10Y', '12Y', '15Y', '20Y', '25Y', '30Y']
maturities = ['2010-02-08', '2011-02-07', '2012-02-06', '2013-02-06', '2014-02-06', '2015-02-06', '2016-02-08', 
    '2017-02-06', '2018-02-06', '2020-02-06', '2023-02-06', '2028-02-07', '2033-02-07', '2038-02-08']
swapRates = [0.02795, 0.03035, 0.03275, 0.03505, 0.03715, 0.03885, 0.04025, 0.04155, 0.04265, 0.04435, 
    0.04615, 0.04755, 0.04805, 0.04815]

# create vanilla swap transaction objects into list
swaps = [VanillaSwap(swapID, 'Payer', 1000000, '2008-02-06', maturity, 'Annual', 
    'Target', 'ModifiedFollowing', 'Backward', swapRate, 'Actual360', False, 'Quarterly', 
    'Target', 'ModifiedFollowing', 'Backward', 0.0, 'Actual360', False, 'USDLibor.3M')
    for swapID, maturity, swapRate in zip(swapIDs, maturities, swapRates)]

Next, the program will initialize the actual market data (to be used in forward curve), starting values for forward curve, set of dates for forward curve, optimization constraints and the actual optimization model.

# take initial forward rates from market data, set initial guesses and scaling factor for objective function
initialMarketData = np.array([0.03145, 0.0279275, 0.0253077, 0.0249374])
initialForwardGuesses = np.full(117, 0.02)
scalingFactor = 1000000.0

# create relevant QuantLib dates
today = ql.Date(4, 2, 2008)
ql.Settings.instance().evaluationDate = today  
settlementDate = ql.TARGET().advance(today, ql.Period(2, ql.Days))

# create set of dates for forward curve
dates = list(ql.Schedule(settlementDate, ql.Date(6, 2, 2038), ql.Period(ql.Quarterly), ql.TARGET(),
    ql.ModifiedFollowing, ql.ModifiedFollowing, ql.DateGeneration.Backward, False))

# create constraints for optimization model
swapConstraints = tuple([{'type': 'eq', 'fun': swap.NPV_calibration, 'args': [[dates, initialMarketData]]} for swap in swaps])

# create and execute scipy minimization model
model = opt.minimize(ObjectiveFunction, initialForwardGuesses, args = ([initialMarketData, scalingFactor]), 
    method = 'SLSQP', options = {'maxiter': 500}, constraints = swapConstraints)

After processing optimization model, the actual calibrated forward rates can be requested from the model. Next part of the program will just plot the calibrated forward term structure.

# extract calibrated forward rates, create times and plot term structure
forwards = np.concatenate([initialMarketData, model.x])
times = np.array([ql.Actual360().yearFraction(settlementDate, date) for date in dates])
pl.plot(times, forwards)
pl.show()















Final part of the program will create QuantLib yield term structure (QuantLib.ForwardCurve) and re-values our initial set of swap transactions. All swaps will be priced to zero at inception date.

# create new QuantLib curve from calibrated forward rates
curve = ql.YieldTermStructureHandle(ql.ForwardCurve(dates, forwards, ql.Actual360(), ql.TARGET()))

# value initial set of vanilla swaps using new QuantLib valuation curve
# all swaps will be priced to zero at inception date
for swap in swaps:
    index = ql.USDLibor(ql.Period(3, ql.Months), curve)
    pv = swap.NPV(curve, index)
    print(swap.ID, '{0:.5f}'.format(pv))

It should be noted, that by utilizing calibration scheme presented in this post, valuation curves (yield term structures) for QuantLib for all currencies and for all different basis can be constructed (assuming the relevant market data exists). Next logical step would be to implement similar scheme for calibrating valuation curves for QuantLib for cross-currency cases and within collateralized world.

Complete program can be downloaded from my GitHub page. Example data has been taken from chapter three within excellent book by Richard Flavell. Finally, thanks again for reading this blog.
-Mike