Let us assume zero-coupon rate term structure as shown below. Let us also assume, that the only information we can observe is the zero-coupon bond prices. Our task is to solve zero-coupon rates term structure.
In a nutshell, we first set initial guesses for ten zero-coupon rates. After this we minimize sum of squared differences between adjacent zero-coupon rates (in objective function), but subject to constraints. In this case, constraints are differences between observed zero-coupon bond market prices and calculated bond prices, which need to be pushed to zero. When this optimization task has been completed, the resulting zero-coupon term structure will successfully re-price the current zero-coupon bond market, while curve smoothness is maximized. Example program results are shown below.
Thanks for reading this blog.
-Mike
import numpy as np import scipy.optimize as opt import matplotlib.pyplot as pl # sum of squared errors of decision variables def ObjectiveFunction(x, args): return np.sum(np.power(np.diff(x), 2) * args[0]) # zero coupon bond pricing function def ZeroCouponBond(x, args): # return difference between calculated and market price return ((1 / (1 + x[args[3]])**args[2]) - args[0]) * args[1] # zero coupon bond pricing functions as constraints # args: market price, scaling factor, maturity, index number for rate array zeroPrices = ({'type': 'eq', 'fun': ZeroCouponBond, 'args': [[0.998801438274071, 1000000.0, 1.0, 0]]}, {'type': 'eq', 'fun': ZeroCouponBond, 'args': [[0.996210802629012, 1000000.0, 2.0, 1]]}, {'type': 'eq', 'fun': ZeroCouponBond, 'args': [[0.991943543964159, 1000000.0, 3.0, 2]]}, {'type': 'eq', 'fun': ZeroCouponBond, 'args': [[0.981028206597786, 1000000.0, 4.0, 3]]}, {'type': 'eq', 'fun': ZeroCouponBond, 'args': [[0.962851266220459, 1000000.0, 5.0, 4]]}, {'type': 'eq', 'fun': ZeroCouponBond, 'args': [[0.946534719794057, 1000000.0, 6.0, 5]]}, {'type': 'eq', 'fun': ZeroCouponBond, 'args': [[0.924997530805076, 1000000.0, 7.0, 6]]}, {'type': 'eq', 'fun': ZeroCouponBond, 'args': [[0.912584111300984, 1000000.0, 8.0, 7]]}, {'type': 'eq', 'fun': ZeroCouponBond, 'args': [[0.892632531026722, 1000000.0, 9.0, 8]]}, {'type': 'eq', 'fun': ZeroCouponBond, 'args': [[0.877098137542374, 1000000.0, 10.0, 9]]}) # initial guesses for ten zero-coupon rates initialGuess = np.full(10, 0.005) model = opt.minimize(ObjectiveFunction, initialGuess, args = ([1000000.0]), method = 'SLSQP', constraints = zeroPrices) # print selected model results print('Success: ' + str(model.success)) print('Message: ' + str(model.message)) print('Number of iterations: ' + str(model.nit)) print('Objective function (sum of squared errors): ' + str(model.fun)) print('Changing variables (zero-coupon rates): ' + str(model.x * 100)) pl.plot(model.x) pl.show()
No comments:
Post a Comment